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Image segmentation is a key task in computer vision and image processing with
important applications such as scene understanding, medical image analysis,
robotic perception, video surveillance, augmented reality, and image compression,
among others, and numerous segmentation algorithms are found in the literature.
Against this backdrop, the broad success of Deep Learning (DL) has prompted the
development of new image segmentation approaches leveraging DL models. We
provide a comprehensive review of this recent literature, covering the spectrum of
pioneering efforts in semantic and instance segmentation, including convolutional
pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-
based approaches, recurrent networks, visual attention models, and generative
models in adversarial settings. We investigate the relationships, strengths, and
challenges of these DL-based segmentation models and discuss promising research
directions.
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1. Introduction

Image segmentation has been a fundamental problem in computer vision since

the early days of the field [1, Chapter 8]. An essential component of many visual

understanding systems, it involves partitioning images (or video frames) into multiple

segments and objects [2, Chapter 5] and plays a central role in a broad range of

applications [3, Part VI], including medical image analysis (e.g., tumor boundary

extraction and tissue volume measurement), autonomous vehicles (e.g., navigable

surface and pedestrian detection), video surveillance, augmented reality, etc.

Image segmentation can be formulated as the problem of classifying pixels

with semantic labels (semantic segmentation), or partitioning of individual objects

(instance segmentation), or both (panoptic segmentation). Semantic segmentation

performs pixel-level labeling with a set of object categories (e.g., human, car, tree,

sky) for all image pixels; thus, it is generally a more demanding undertaking

than whole-image classification, which predicts a single label for the entire image.

Instance segmentation extends the scope of semantic segmentation by detecting and

delineating each object of interest in the image (e.g., individual people).

Numerous image segmentation algorithms have been developed in the literature,

from the earliest methods, such as thresholding,4 histogram-based bundling, region-

growing,5 k-means clustering,6 watershed methods,7 to more advanced algorithms

such as active contours,8 graph cuts,9 conditional and Markov random fields,10 and

sparsity-based11,12 methods. In recent years, however, deep learning (DL) models

have yielded a new generation of image segmentation models with remarkable

performance improvements, often achieving the highest accuracy rates on popular

benchmarks. This has caused a paradigm shift in the field.

1.1. Overview

This chapter is a shortened and slightly revised version of our 2022 survey article.13

It covers the recent literature in deep-learning-based image segmentation, including

more than 100 such segmentation methods proposed to date. It provides a compre-

hensive review with insights into key aspects of these methods. The target literature

is organized into the following categories:

(1) Fully convolutional networks

(2) Convolutional models with graphical models

(3) Encoder-decoder based models

(4) Multiscale and pyramid network based models

(5) R-CNN based models (for instance segmentation)

(6) Dilated convolutional models and DeepLab family

(7) Recurrent neural network based models

(8) Attention-based models

(9) Generative models and adversarial training

(10) Convolutional models with active contour models
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Fig. 1. Timeline of representative DL-based image segmentation algorithms. Orange, green, and
yellow blocks indicate semantic, instance, and panoptic segmentation algorithms, respectively.

Within this taxonomy,

• we provide a comprehensive review and analysis of deep-learning-based image

segmentation algorithms;

• we discuss several challenges and future research directions for deep-learning-

based image segmentation.

The remainder of the chapter is organized as follows: Section 2 reviews the most

significant state-of-the-art deep learning based segmentation models. Fig. 1 provides

a timeline since 2014 of some of the most representative such models that, among

others, will be reviewed in the section. Section 3 discusses the main challenges and

research opportunities of the deep learning-based segmentation paradigm.

2. DL-Based Image Segmentation Models

This section comprises a survey of numerous learning-based segmentation methods,

grouped into 10 categories based on their model architectures. Several architec-

tural features are common among many of these methods, such as encoders and

decoders, skip-connections, multiscale architectures, and more recently the use of

dilated convolutions. It is convenient to group models based on their architectural

contributions over prior models.

2.1. Fully Convolutional Models

Long et al.14 proposed Fully Convolutional Networks (FCNs), a milestone in DL-

based semantic image segmentation models. An FCN includes only convolutional

layers, which enables it to output a segmentation map whose size is the same as

that of the input image. To handle arbitrarily-sized images, the authors modified

existing CNN architectures, such as VGG16 and GoogLeNet, by removing all fully-

connected layers such that the model outputs a spatial segmentation map instead of

classification scores.
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Through the use of skip connections in which feature maps from the final layers

of the model are up-sampled and fused with feature maps of earlier layers, the

model combines semantic information (from deep, coarse layers) and appearance

information (from shallow, fine layers) in order to produce accurate and detailed

segmentations. Tested on PASCAL VOC, NYUDv2, and SIFT Flow, the model

achieved state-of-the-art segmentation performance.

FCNs have been applied to a variety of segmentation problems, such as brain

tumor segmentation,15 instance-aware semantic segmentation,16 skin lesion segmen-

tation,17 and iris segmentation.18 While demonstrating that DNNs can be trained

to perform semantic segmentation in an end-to-end manner on variable-sized images,

the conventional FCN model has some limitations—it is too computationally expen-

sive for real-time inference, it does not account for global context information in an

efficient manner, and it is not easily generalizable to 3D images. Several researchers

have attempted to overcome some of the limitations of the FCN. For example, Liu

et al.19 proposed ParseNet, which adds global context to FCNs by using the average

feature for a layer to augment the features at each location. The feature map for

a layer is pooled over the whole image, resulting in a context vector. The context

vector is normalized and unpooled to produce new feature maps of the same size

as the initial ones, which are then concatenated, which amounts to an FCN whose

convolutional layers are replaced by the described module.

2.2. CNNs With Graphical Models

As discussed, the FCN ignores potentially useful scene-level semantic context. To

exploit more context, several approaches incorporate into DL architectures proba-

bilistic graphical models, such as Conditional Random Fields (CRFs) and Markov

Random Fields (MRFs).

Due to the invariance properties that make CNNs good for high level tasks such

as classification, responses from the later layers of deep CNNs are not sufficiently

well localized for accurate object segmentation. To address this drawback, Chen et

al.20 proposed a semantic segmentation algorithm that combines CNNs and fully-

connected CRFs. They showed that their model can localize segment boundaries

with higher accuracy than was possible with previous methods.

Schwing and Urtasun21 proposed a fully-connected deep structured network

for image segmentation. They jointly trained CNNs and fully-connected CRFs

for semantic image segmentation, and achieved encouraging results on the chal-

lenging PASCAL VOC 2012 dataset. Zheng et al.22 proposed a similar semantic

segmentation approach. In related work, Lin et al.23 proposed an efficient semantic

segmentation model based on contextual deep CRFs. They explored “patch-patch”

context (between image regions) and “patch-background” context to improve seman-

tic segmentation through the use of contextual information.

Liu et al.24 proposed a semantic segmentation algorithm that incorporates

rich information into MRFs, including high-order relations and mixture of label
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contexts. Unlike previous efforts that optimized MRFs using iterative algorithms,

they proposed a CNN model, namely a Parsing Network, which enables deterministic

end-to-end computation in one pass.

2.3. Encoder-Decoder Based Models

Most of the popular DL-based segmentation models use some kind of encoder-decoder

architecture. We group these models into two categories: those for general image

segmentation, and those for medical image segmentation.

2.3.1. General Image Segmentation

Noh et al.25 introduced semantic segmentation based on deconvolution (a.k.a. trans-

posed convolution). Their model, DeConvNet, consists of two parts, an encoder

using convolutional layers adopted from the VGG 16-layer network and a multilayer

deconvolutional network that inputs the feature vector and generates a map of

pixel-accurate class probabilities. The latter comprises deconvolution and unpooling

layers, which identify pixel-wise class labels and predict segmentation masks.

Badrinarayanan et al.26 proposed SegNet, a fully convolutional encoder-decoder

architecture for image segmentation. Similar to the deconvolution network, the core

trainable segmentation engine of SegNet consists of an encoder network, which is

topologically identical to the 13 convolutional layers of the VGG16 network, and

a corresponding decoder network followed by a pixel-wise classification layer. The

main novelty of SegNet is in the way the decoder upsamples its lower-resolution

input feature map(s); specifically, using pooling indices computed in the max-pooling

step of the corresponding encoder to perform nonlinear up-sampling.

A limitation of encoder-decoder based models is the loss of fine-grained image

information, due to the loss of resolution through the encoding process. HRNet27

addresses this shortcoming. Other than recovering high-resolution representations as

is done in DeConvNet, SegNet, and other models, HRNet maintains high-resolution

representations through the encoding process by connecting the high-to-low reso-

lution convolution streams in parallel and repeatedly exchanging the information

across resolutions. There are four stages: the 1st stage consists of high-resolution con-

volutions, while the 2nd/3rd/4th stage repeats 2-resolution/3-resolution/4-resolution

blocks. Several recent semantic segmentation models use HRNet as a backbone.

Several other works adopt transposed convolutions, or encoder-decoders for

image segmentation, such as Stacked Deconvolutional Network (SDN),28 Linknet,29

W-Net,30 and locality-sensitive deconvolution networks for RGB-D segmentation.31

2.3.2. Medical and Biomedical Image Segmentation

Several models inspired by FCNs and encoder-decoder networks were initially de-

veloped for medical/biomedical image segmentation, but are now also being used

outside the medical domain.
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Ronneberger et al.32 proposed the U-Net for efficiently segmenting biological

microscopy images. The U-Net architecture comprises two parts, a contracting

path to capture context, and a symmetric expanding path that enables precise

localization. The U-Net training strategy relies on the use of data augmentation to

learn effectively from very few annotated images. It was trained on 30 transmitted

light microscopy images, and it won the ISBI cell tracking challenge 2015 by a large

margin.

Various extensions of U-Net have been developed for different kinds of images and

problem domains; for example, Zhou et al.33 developed a nested U-Net architecture,

Zhang et al.34 developed a road segmentation algorithm based on U-Net, and Cicek

et al.35 proposed a U-Net architecture for 3D images.

V-Net, proposed by Milletari et al.36 for 3D medical image segmentation, is

another well known FCN-based model. The authors introduced a new loss function

based on the Dice coefficient, enabling the model to deal with situations in which

there is a strong imbalance between the number of voxels in the foreground and

background. The network was trained end-to-end on MRI images of the prostate

and learns to predict segmentation for the whole volume at once. Some of the other

relevant works on medical image segmentation includes Progressive Dense V-Net37

for automatic segmentation of pulmonary lobes from chest CT images, and the

3D-CNN encoder for lesion segmentation.38

2.4. Multiscale and Pyramid Network Based Models

Multiscale analysis, a well established idea in image processing, has been deployed

in various neural network architectures. One of the most prominent models of this

sort is the Feature Pyramid Network (FPN) proposed by Lin et al.,39 which was

developed for object detection but was also applied to segmentation. The inherent

multiscale, pyramidal hierarchy of deep CNNs was used to construct feature pyramids

with marginal extra cost. To merge low and high resolution features, the FPN is

composed of a bottom-up pathway, a top-down pathway and lateral connections.

The concatenated feature maps are then processed by a 3× 3 convolution to produce

the output of each stage. Finally, each stage of the top-down pathway generates

a prediction to detect an object. For image segmentation, the authors use two

multilayer perceptrons (MLPs) to generate the masks.

Zhao et al.40 developed the Pyramid Scene Parsing Network (PSPN), a multiscale

network to better learn the global context representation of a scene. Multiple patterns

are extracted from the input image using a residual network (ResNet) as a feature

extractor, with a dilated network. These feature maps are then fed into a pyramid

pooling module to distinguish patterns of different scales. They are pooled at four

different scales, each one corresponding to a pyramid level, and processed by a 1× 1

convolutional layer to reduce their dimensions. The outputs of the pyramid levels

are up-sampled and concatenated with the initial feature maps to capture both local

and global context information. Finally, a convolutional layer is used to generate
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the pixel-wise predictions.

Ghiasi and Fowlkes41 developed a multiresolution reconstruction architecture

based on a Laplacian pyramid that uses skip connections from higher resolution

feature maps and multiplicative gating to successively refine segment boundaries

reconstructed from lower-resolution maps. They showed that while the apparent

spatial resolution of convolutional feature maps is low, the high-dimensional feature

representation contains significant sub-pixel localization information.

Other models use multiscale analysis for segmentation, among them Dynamic

Multiscale Filters Network (DM-Net),42 Context Contrasted Network and gated

multiscale aggregation (CCN),43 Adaptive Pyramid Context Network (APC-Net),44

MultiScale Context Intertwining (MSCI),45 and salient object segmentation.46

2.5. R-CNN Based Models

The Regional CNN (R-CNN) and its extensions have proven successful in object

detection applications. In particular, the Faster R-CNN47 architecture uses a

region proposal network (RPN) that proposes bounding box candidates. The RPN

extracts a Region of Interest (RoI), and an RoIPool layer computes features from

these proposals to infer the bounding box coordinates and class of the object.

Some extensions of R-CNN have been used to address the instance segmentation

problem; i.e., the task of simultaneously performing object detection and semantic

segmentation.

He et al.48 proposed Mask R-CNN, which outperformed previous benchmarks on

many COCO object instance segmentation challenges, efficiently detecting objects

in an image while simultaneously generating a high-quality segmentation mask for

each instance. Essentially, it is a Faster R-CNN with 3 output branches—the first

computes the bounding box coordinates, the second computes the associated classes,

and the third computes the binary mask to segment the object. The Mask R-CNN

loss function combines the losses of the bounding box coordinates, the predicted

class, and the segmentation mask, and trains all of them jointly.

The Path Aggregation Network (PANet) proposed by Liu et al.49 is based on the

Mask R-CNN and FPN models. The feature extractor of the network uses an FPN

backbone with a new augmented bottom-up pathway improving the propagation

of lower-layer features. Each stage of this third pathway takes as input the feature

maps of the previous stage and processes them with a 3× 3 convolutional layer. A

lateral connection adds the output to the same-stage feature maps of the top-down

pathway and these feed the next stage.

Dai et al.50 developed a multitask network for instance-aware semantic segmen-

tation that consists of three networks for differentiating instances, estimating masks,

and categorizing objects. These networks form a cascaded structure and are designed

to share their convolutional features. Hu et al.51 proposed a new partially-supervised

training paradigm together with a novel weight transfer function, which enables

training instance segmentation models on a large set of categories, all of which have
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box annotations, but only a small fraction of which have mask annotations.

Chen et al.52 developed an instance segmentation model, MaskLab, by refining

object detection with semantic and direction features based on Faster R-CNN. This

model produces three outputs, box detection, semantic segmentation logits for pixel-

wise classification, and direction prediction logits for predicting each pixel’s direction

toward its instance center. Building on the Faster R-CNN object detector, the

predicted boxes provide accurate localization of object instances. Within each region

of interest, MaskLab performs foreground/background segmentation by combining

semantic and direction prediction.

Tensormask, proposed by Chen et al.,53 is based on dense sliding window instance

segmentation. The authors treat dense instance segmentation as a prediction task

over 4D tensors and present a general framework that enables novel operators on 4D

tensors. They demonstrate that the tensor approach yields large gains over baselines,

with results comparable to Mask R-CNN.

Other instance segmentation models have been developed based on R-CNN,

such as those developed for mask proposals, including R-FCN,54 DeepMask,55

PolarMask,56 boundary-aware instance segmentation,57 and CenterMask.58 Another

promising approach is to tackle the instance segmentation problem by learning

grouping cues for bottom-up segmentation, such as deep watershed transform,59

real-time instance segmentation,60 and semantic instance segmentation via deep

metric learning.61

2.6. Dilated Convolutional Models

Dilated (a.k.a. “atrous”) convolution introduces to convolutional layers another

parameter, the dilation rate. For example, a 3× 3 kernel with a dilation rate of 2

will have the same size receptive field as a 5× 5 kernel while using only 9 parameters,

thus enlarging the receptive field with no increase in computational cost.

Dilated convolutions have been popular in the field of real-time segmentation,

and many recent publications report the use of this technique. Some of the most

important include the DeepLab family,62 multiscale context aggregation,63 Dense

Upsampling Convolution and Hybrid Dilated Convolution (DUC-HDC),64 densely

connected Atrous Spatial Pyramid Pooling (DenseASPP),65 and the Efficient Network

(ENet).66

DeepLabv120 and DeepLabv2,62 developed by Chen et al., are among the most

popular image segmentation models. The latter has three key features. First is the

use of dilated convolution to address the decreasing resolution in the network caused

by max-pooling and striding. Second is Atrous Spatial Pyramid Pooling (ASPP),

which probes an incoming convolutional feature layer with filters at multiple sampling

rates, thus capturing objects as well as multiscale image context to robustly segment

objects at multiple scales. Third is improved localization of object boundaries by

combining methods from deep CNNs, such as fully convolutional VGG-16 or ResNet

101, and probabilistic graphical models, specifically fully-connected CRFs.
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Subsequently, Chen et al.67 proposed DeepLabv3, which combines cascaded

and parallel modules of dilated convolutions. The parallel convolution modules

are grouped in the ASPP. A 1× 1 convolution and batch normalization are added

in the ASPP. All the outputs are concatenated and processed by another 1 × 1

convolution to create the final output with logits for each pixel. Next, Chen et al.68

released Deeplabv3+, which uses an encoder-decoder architecture including dilated

separable convolution composed of a depthwise convolution (spatial convolution

for each channel of the input) and pointwise convolution (1× 1 convolution with

the depthwise convolution as input). They used the DeepLabv3 framework as the

encoder. The most relevant model has a modified Xception backbone with more

layers, dilated depthwise separable convolutions instead of max pooling and batch

normalization.

2.7. RNN Based Models

While CNNs are a natural fit for computer vision problems, they are not the only

possibility. RNNs are useful in modeling the short/long term dependencies among

pixels to (potentially) improve the estimation of the segmentation map. Using RNNs,

pixels may be linked together and processed sequentially to model global contexts

and improve semantic segmentation. However the natural 2D structure of images

poses a challenge.

Visin et al.69 proposed an RNN-based model for semantic segmentation called

ReSeg. This model is mainly based on ReNet,70 which was developed for image

classification. Each ReNet layer is composed of four RNNs that sweep the image

horizontally and vertically in both directions, encoding patches/activations, and

providing relevant global information. To perform image segmentation with the

ReSeg model, ReNet layers are stacked atop pre-trained VGG-16 convolutional

layers, which extract generic local features, and are then followed by up-sampling

layers to recover the original image resolution in the final predictions.

Byeon et al.71 performed per-pixel segmentation and classification of images of

natural scenes using 2D LSTM networks, which learn textures and the complex spatial

dependencies of labels in a single model that carries out classification, segmentation,

and context integration.

Liang et al.72 proposed a semantic segmentation model based on a graph-LSTM

network in which convolutional layers are augmented by graph-LSTM layers built

on super-pixel maps, which provide a more global structural context. These layers

generalize the LSTM for uniform, array-structured data (i.e., row, grid, or diagonal

LSTMs) to nonuniform, graph-structured data, where arbitrary-shaped superpixels

are semantically consistent nodes and the adjacency relations between superpixels

correspond to edges, thus forming an undirected graph.

Xiang and Fox73 proposed Data Associated Recurrent Neural Networks (DA-

RNNs) for joint 3D scene mapping and semantic labeling. DA-RNNs use a new

recurrent neural network architecture for semantic labeling on RGB-D videos. The
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output of the network is integrated with mapping techniques such as Kinect-Fusion

in order to inject semantic information into the reconstructed 3D scene.

Hu et al.74 developed a semantic segmentation algorithm that combines a CNN

to encode the image and an LSTM to encode its linguistic description. To produce

pixel-wise image segmentations from language inputs, they propose an end-to-end

trainable recurrent and convolutional model that jointly learns to process visual

and linguistic information. This differs from traditional semantic segmentation over

a predefined set of semantic classes; i.e., the phrase “two men sitting on the right

bench” requires segmenting only the two people on the right bench and no others

sitting on another bench or standing.

A drawback of RNN-based models is that they will generally be slower than their

CNN counterparts as their sequential nature is not amenable to parallelization.

2.8. Attention-Based Models

Attention mechanisms have been persistently explored in computer vision over the

years, and it is not surprising to find publications that apply them to semantic

segmentation.

Chen et al.75 proposed an attention mechanism that learns to softly weight

multiscale features at each pixel location. They adapt a powerful semantic segmen-

tation model and jointly train it with multiscale images and the attention model.

The attention mechanism enables the model to assess the importance of features at

different positions and scales, and it outperforms average and max pooling.

Unlike approaches in which convolutional classifiers are trained to learn the

representative semantic features of labeled objects, Huang et al.76 proposed a

Reverse Attention Network (RAN) architecture for semantic segmentation that also

applies reverse attention mechanisms, thereby training the model to capture the

opposite concept—features that are not associated with a target class. The RAN

network performs the direct and reverse-attention learning processes simultaneously.

Li et al.77 developed a Pyramid Attention Network for semantic segmentation,

which exploits global contextual information for semantic segmentation. Eschewing

complicated dilated convolutions and decoder networks, they combined attention

mechanisms and spatial pyramids to extract precise dense features for pixel labeling.

Fu et al.78 proposed a dual attention network for scene segmentation that can capture

rich contextual dependencies based on the self-attention mechanism. Specifically,

they append two types of attention modules on top of a dilated FCN that models

the semantic inter-dependencies in spatial and channel dimensions, respectively. The

position attention module selectively aggregates the features at each position via

weighted sums.

Other applications of attention mechanisms to semantic segmentation include

OCNet,79 which employs an object context pooling inspired by self-attention mecha-

nism, ResNeSt: Split-Attention Networks,80 Height-driven Attention Networks,81

Expectation-Maximization Attention (EMANet),82 Criss-Cross Attention Network
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(CCNet),83 end-to-end instance segmentation with recurrent attention,84 a point-wise

spatial attention network for scene parsing,85 and Discriminative Feature Network

(DFN).86

2.9. Generative Models and Adversarial Training

GANs have been applied to a wide range of tasks in computer vision, not excluding

image segmentation.

Luc et al.87 proposed an adversarial training approach for semantic segmenta-

tion in which they trained a convolutional semantic segmentation network, along

with an adversarial network that discriminates between ground-truth segmentation

maps and those generated by the segmentation network. They showed that the

adversarial training approach yields improved accuracy on the Stanford Background

and PASCAL VOC 2012 datasets.

Souly et al.88 proposed semi-weakly supervised semantic segmentation using

GANs. Their model consists of a generator network providing extra training examples

to a multiclass classifier, acting as discriminator in the GAN framework, that assigns

sample a label from the possible label classes or marks it as a fake sample (extra

class).

Hung et al.89 developed a framework for semi-supervised semantic segmentation

using an adversarial network. They designed an FCN discriminator to differentiate

the predicted probability maps from the ground truth segmentation distribution,

considering the spatial resolution. The loss function of this model has three terms:

cross-entropy loss on the segmentation ground truth, adversarial loss of the discrimi-

nator network, and semi-supervised loss based on the confidence map output of the

discriminator.

Xue et al.90 proposed an adversarial network with multiscale L1 Loss for medical

image segmentation. They used an FCN as the segmentor to generate segmentation

label maps, and proposed a novel adversarial critic network with a multi-scale L1

loss function to force the critic and segmentor to learn both global and local features

that capture long and short range spatial relationships between pixels.

Other approaches based on adversarial training include cell image segmentation

using GANs,91 and segmentation and generation of the invisible parts of objects.92

2.10. CNN Models With Active Contour Models

The exploration of synergies between FCNs and Active Contour Models (ACMs)8

has recently attracted research interest.

One approach is to formulate new loss functions that are inspired by ACM

principles. For example, inspired by the global energy formulation of Chan and

Vese,93 Chen et al.94 proposed a supervised loss layer that incorporated area and

size information of the predicted masks during training of an FCN and tackled the

problem of ventricle segmentation in cardiac MRI. Similarly, Gur et al.95 presented



October 3, 2024 22:34 ws-rv961x669 Book Title ws25 page 12

12 S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos

an unsupervised loss function based on morphological active contours without edges96

for microvascular image segmentation.

A different approach initially sought to utilize the ACM merely as a post-processor

of the output of an FCN and several efforts attempted modest co-learning by pre-

training the FCN. One example of an ACM post-processor for the task of semantic

segmentation of natural images is the work by Le et al.97 in which level-set ACMs

are implemented as RNNs. Deep Active Contours by Rupprecht et al.,98 is another

example. For medical image segmentation, Hatamizadeh et al.99 proposed an

integrated Deep Active Lesion Segmentation (DALS) model that trains the FCN

backbone to predict the parameter functions of a novel, locally-parameterized level-

set energy functional. In another relevant effort, Marcos et al.100 proposed Deep

Structured Active Contours (DSAC), which combines ACMs and pre-trained FCNs

in a structured prediction framework for building instance segmentation (albeit with

manual initialization) in aerial images. For the same application, Cheng et al.101

proposed the Deep Active Ray Network (DarNet), which is similar to DSAC, but

with a different explicit ACM formulation based on polar coordinates to prevent

contour self-intersection.

A truly end-to-end backpropagation trainable, fully-integrated FCN-ACM com-

bination was recently introduced by Hatamizadeh et al.,102 dubbed Trainable Deep

Active Contours (TDAC). Going beyond their earlier work,99 they implemented

the locally-parameterized level-set ACM in the form of additional convolutional

layers following the layers of the backbone FCN, exploiting Tensorflow’s automatic

differentiation mechanism to backpropagate training error gradients throughout the

entire DCAC framework. The fully-automated model requires no intervention either

during training or segmentation, can naturally segment multiple instances of objects

of interest, and deal with arbitrary object shape including sharp corners.

2.11. Other Models

Other popular DL architectures for image segmentation include the following:

Context Encoding Network (EncNet)103 uses a basic feature extractor and feeds

the feature maps into a context encoding module. RefineNet104 is a multipath

refinement network that explicitly exploits all the information available along the

down-sampling process to enable high-resolution prediction using long-range residual

connections. Seednet105 introduced an automatic seed generation technique with

deep reinforcement learning that learns to solve the interactive segmentation prob-

lem. Object-Contextual Representations (OCR)27 learns object regions and the

relation between each pixel and each object region, augmenting the representation

pixels with the object-contextual representation. Additional models and methods

include BoxSup,106 Graph Convolutional Networks (GCN),107 Wide ResNet,108

Exfuse109 (enhancing low-level and high-level features fusion), Feedforward-Net,110

saliency-aware models for geodesic video segmentation,111 Dual Image Segmenta-

tion (DIS),112 FoveaNet113 (perspective-aware scene parsing), Ladder DenseNet,114



October 3, 2024 22:34 ws-rv961x669 Book Title ws25 page 13

Image Segmentation Using Deep Learning 13

Bilateral Segmentation Network (BiSeNet),115 Semantic Prediction Guidance for

Scene Parsing (SPGNet),116 gated shape CNNs,117 Adaptive Context Network (AC-

Net),118 Dynamic-Structured Semantic Propagation Network (DSSPN),119 Symbolic

Graph Reasoning (SGR),120 CascadeNet,121 Scale-Adaptive Convolutions (SAC),122

Unified Perceptual parsing Network (UperNet),123 segmentation by re-training and

self-training,124 densely connected neural architecture search,125 hierarchical multi-

scale attention,126 Efficient RGB-D Semantic Segmentation (ESA-Net),127 Iterative

Pyramid Contexts,128 and Learning Dynamic Routing for Semantic Segmentation.129

Panoptic segmentation130 is growing in popularity. Efforts in this direction

include Panoptic Feature Pyramid Network (PFPN),131 attention-guided network

for panoptic segmentation,132 seamless scene segmentation,133 panoptic Deeplab,134

unified panoptic segmentation network,135 and efficient panoptic segmentation.136

3. Challenges and Opportunities

We have surveyed image segmentation algorithms based on deep learning models,

which have achieved impressive performance in various image segmentation tasks

and benchmarks, grouped into architectural categories such as: CNN and FCN,

RNN, R-CNN, dilated CNN, attention-based models, generative and adversarial

models, among others. Without a doubt, image segmentation has benefited greatly

from deep learning, but several challenges lie ahead. We will next discuss some

of the promising research directions that we believe will help in further advancing

image segmentation algorithms.

3.1. More Challenging Datasets

Several large-scale image datasets have been created for semantic segmentation and

instance segmentation. However, there remains a need for more challenging datasets,

as well as datasets of different kinds of images. For still images, datasets with a

large number of objects and overlapping objects would be very valuable. This can

enable the training of models that handle dense object scenarios better, as well as

large overlaps among objects as is common in real-world scenarios. With the rising

popularity of 3D image segmentation, especially in medical image analysis, there

is also a strong need for large-scale annotated 3D image datasets, which are more

difficult to create than their lower dimensional counterparts.

3.2. Combining DL and Earlier Segmentation Models

There is now broad agreement that the performance of DL-based segmentation

algorithms is plateauing, especially in certain application domains such as medical

image analysis. To advance to the next level of performance, we must further explore

the combination of CNN-based image segmentation models with prominent “classical”

model-based image segmentation methods. The integration of CNNs with graphical
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models has been studied, but their integration with active contours, graph cuts, and

other segmentation models is fairly recent and deserves further work.

3.3. Interpretable Deep Models

While DL-based models have achieved promising performance on challenging bench-

marks, there remain open questions about these models. For example, what exactly

are deep models learning? How should we interpret the features learned by these

models? What is a minimal neural architecture that can achieve a certain segmenta-

tion accuracy on a given dataset? Although some techniques are available to visualize

the learned convolutional kernels of these models, a comprehensive study of the

underlying behavior/dynamics of these models is lacking. A better understanding of

the theoretical aspects of these models can enable the development of better models

curated toward various segmentation scenarios.

3.4. Weakly-Supervised and Unsupervised Learning

Weakly-supervised (a.k.a. few shot) learning137 and unsupervised learning138 are

becoming very active research areas. These techniques promise to be specially

valuable for image segmentation, as collecting pixel-accurately labeled training

images is problematic in many application domains, particularly so in medical image

analysis. The transfer learning approach is to train a generic image segmentation

model on a large set of labeled samples (perhaps from a public benchmark) and

then fine-tune that model on a few samples from some specific target application.

Self-supervised learning is another promising direction that is attracting much

attraction in various fields. With the help of self-supervised learning, many details in

images can be captured in order to train segmentation models with far fewer training

samples. Models based on reinforcement learning could also be another potential

future direction, as they have scarcely received attention for image segmentation.

For example, MOREL139 introduced a deep reinforcement learning approach for

moving object segmentation in videos.

3.5. Real-time Models for Various Applications

In many applications, accuracy is the most important factor; however, there are

applications in which it is also critical to have segmentation models that can run in

near real-time, or at common camera frame rates (at least 25 frames per second). This

is useful for computer vision systems that are, for example, deployed in autonomous

vehicles. Most of the current models are far from this frame-rate; e.g., FCN-8

takes roughly 100ms to process a low-resolution image. Models based on dilated

convolution help to increase the speed of segmentation models to some extent, but

there is still plenty of room for improvement.
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3.6. Memory Efficient Models

Many modern segmentation models require a significant amount of memory even

during the inference stage. So far, much effort has been directed towards improving

the accuracy of such models, but in order to fit them into specific devices, such as

mobile phones, the networks must be simplified. This can be done either by using

simpler models, or by using model compression techniques, or even by training a

complex model and using knowledge distillation techniques to compress it into a

smaller, memory efficient network that mimics the complex model.

3.7. Applications

DL-based segmentation methods have been successfully applied to satellite images in

remote sensing,140 such as to support urban planning141 and precision agriculture.142

Images collected by airborne platforms143 and drones144 have also been segmented

using DL-based segmentation methods in order to address important environmental

problems including ones related to climate change. The main challenges of the

remote sensing domain stem from the typically formidable size of the imagery (often

collected by imaging spectrometers with hundreds or even thousands of spectral

bands) and the limited ground-truth information necessary to evaluate the accuracy

of the segmentation algorithms. Similarly, DL-based segmentation techniques in the

evaluation of construction materials145 face challenges related to the massive volume

of the related image data and the limited reference information for validation purposes.

Last but not least, an important application field for DL-based segmentation has

been biomedical imaging.146 Here, an opportunity is to design standardized image

databases useful in evaluating new infectious diseases and tracking pandemics.147
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